Сколько я себя помню, всегда мечтал сделать процессор. Наконец, вчера я его сделал. Не бог весть что: 8 бит, RISC, текущая рабочая частота — 4 кГц, но он работает. Пока что в программе моделирования логических цепей, но все мы знаем: «сегодня — на модели, завтра — на деле!».

Под катом несколько анимаций, краткое введение в двоичную логику для самых маленьких, короткий рассказ про основные микросхемы логики процессора и, собственно, схема.

Двоичная логика

Двоичная система счисления (для тех, кто не в курсе) — это такая система счисления, в которой нет цифр больше единицы. Такое определение многих сбивает с толку, пока они не вспомнят, что в десятичной системе счисления нет цифр больше девятки.

Двоичная система используется в компьютерах потому, что числа в ней легко кодировать напряжением: есть напряжение — значит, единица; нет напряжения — значит, ноль. Кроме того, «ноль» и «один» легко можно понимать как «ложно» и «истинно». Более того, большая часть устройств, работающих в двоичной системе счисления, обычно относится к числам как к массиву «истинностей» и «ложностей», то есть оперирует с числами как с логическими величинами. Для самых маленьких и тех, кто не в курсе, я расскажу и покажу, как работают простейшие элементы двоичной логики.

Элемент «Буфер»

Представьте, что вы сидите в своей комнате, а ваш друг — на кухне. Вы кричите ему: «Друг, скажи, в коридоре горит свет?». Друг отвечает: «Да, горит!» или «Нет, не горит». Ваш друг — буфер между источником сигнала (лампочкой в коридоре) и приемником (вами). Более того, ваш друг — не какой-нибудь там обычный буфер, а буфер управляемый. Он был бы обычным буфером, если бы постоянно кричал: «Лампочка светится» или «Лампочка не светится».

Элемент «Не» — NOT

А теперь представьте, что ваш друг — шутник, который всегда говорит неправду. И если лампочка в коридоре светится, то он скажет вам «Нет, в коридоре совсем-совсем темно», а если не светится — то «Да, в коридоре свет горит». Если у вас есть такой друг на самом деле, значит, он воплощение элемента «Не».

Элемент «Или» — OR

Для объяснения сути элемента «Или» одной лампочки и одного друга, к сожалению, не хватит. Нужно две лампочки. Итак, у вас в коридоре две лампочки — торшер, к примеру, и люстра. Вы кричите: «Друг, скажи, хотя бы одна лампочка в коридоре светит?», и ваш друг отвечает «Да» или «Нет». Очевидно, что для ответа «Нет» все лампочки обязательно должны быть выключены.

Элемент «И» — AND

Та же самая квартира, вы, друг на кухне, торшер и люстра в коридоре. На ваш вопрос «В коридоре обе лампочки горят?» вы получаете ответ «Да» или «Нет». Поздравляю, теперь ваш друг — это элемент «И».

Элемент «Исключающее Или» — XOR

Повторим еще раз эксперимент для элемента «Или», но переформулируем свой вопрос к другу: «Друг, скажи, в коридоре только одна лампочка светит?». Честный друг ответит на такой вопрос «Да» только в том случае, если в коридоре действительно горит только одна лампочка.

Сумматоры

Четвертьсумматор

Четвертьсумматором называют элемент «Исключающее Или». Почему? Давайте разберемся.
Составим таблицу сложения для двух чисел в двоичной системе счисления:
0+0= 0
0+1= 1
1+0= 1
1+1= 10

Теперь запишем таблицу истинности элемента «Исключающее Или». Для этого обозначим светящуюся лампочку за 1, потухшую — за 0, и ответы друга «Да»/«Нет» как 1 и 0 соответственно.
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Очень похоже, не так ли? Таблица сложения и таблица истинности «Исключающего Или» совпадают полностью, кроме одного-единственного случая. И этот случай называется «Переполнение».

Полусумматор

При переполнении результат сложения уже не помещается в столько же разрядов, во сколько помещались слагаемые. Слагаемые — два однозначных числа (одна значащая цифра, понимаете?), а сумма — уже двузначное (две значащих цифры). Две цифры одной лампочкой («Светится»/«Не светится») уже не передать. Нужно две лампочки. Нужно — сделаем!

Кроме XOR, для сумматора нам потребуется элемент «И» (AND).
0 XOR 0 = 0 0 AND 0 = 0
0 XOR 1 = 1 0 AND 1 = 0
1 XOR 0 = 1 1 AND 0 = 0
1 XOR 1 = 0 1 AND 1 = 1

Тадам!
0+0= 00
0+1= 01
1+0= 01
1+1= 10

Наш а вундервафля полусумматор работает. Его можно считать простейшим специализированным процессором, который складывает два числа. Полусумматор называется полусумматором потому, что с его помощью нельзя учитывать перенос (результат работы другого сумматора), то есть нельзя складывать три однозначных двоичных числа. В связи с этим из нескольких одноразрядных полусумматоров нельзя сделать один многоразрядный.

Я не буду вдаваться в подробности работы полных и многоразрядных сумматоров, просто надеюсь, что основную идею вы уловили.

Более сложные элементы

Мультиплексор

Предлагаю снова включить воображение. Итак, представьте. Вы живете в частном одноквартирном доме, возле двери этого дома стоит ваш почтовый ящик. Выходя на прогулку, вы замечаете странного почтальона, который стоит возле этого самого почтового ящика. И вот что он делает: достает кучу писем из сумки, читает номер на почтовом ящике, и в зависимости от номера на ящике бросает в него то или иное письмо. Почтальон работает мультиплексором. Он определенным образом (номер на конверте) определяет, какой отправить сигнал (письмо) по сигнальной линии (почтовый ящик).

Мультплексоры состоят обычно только из сочетаний элементов «И», «Или» и «Не». У одноразрядного мультиплексора один вход называется «выбор адреса», два входа с общим названием «входной сигнал» и один выход, который так и называется: «выходной сигнал».

Когда на «выбор адреса» подается 0, то «выходной сигнал» становится таким же, как первый «входной сигнал». Соответственно, когда на «выбор» подается 1, то «выходной сигнал» становится равным второму «входному сигналу».

Демультиплексор

А вот эта штучка работает с точностью до наоборот. На «выбор адреса» даем адрес, на «вход данных» даем данные, на выходе с номером «адрес» имеем данные со входа.

Счетчик

Для понимания работы счетчика вам опять понадобится ваш друг. Позовите его из кухни (надеюсь, он не сильно там скучал, и, главное, не съел всю вашу еду), и попросите делать вот что: пусть он запомнит число 0. Каждый раз, когда вы будете прикасаться к нему, он должен прибавить единицу к тому числу, которое помнит, сказать результат и запомнить его. Когда результат будет равен (допустим) 3, он должен выкрикнуть «Абракадабра!» и отвечать при следующем прикосновении, что сейчас он помнит число 0. Немного сложно? Смотрите:

Вы прикасаетесь к другу. Друг говорит «Один».
Вы прикасаетесь к другу. Друг говорит «Два».
Вы прикасаетесь к другу. Друг говорит «Три». Друг выкрикивает «Хабрахабр! ». Критическая атака! Вы временно парализованы и не можете двигаться.
Вы прикасаетесь к другу. Друг говорит «Ноль».

Ну, и так далее. Очень просто, верно?
Вы, конечно, поняли, что ваш друг сейчас — это счетчик. Прикосновение к другу можно считать «тактирующим сигналом» или, попросту говоря, сигналом продолжения счета. Крик «Абракадабра» показывает, что запомненное значение в счетчике — максимальное, и что при следующем тактирующем сигнале счетчик будет установлен в ноль. Есть два отличия двоичного счетчика от вашего друга. Первое: настоящий двоичный счетчик выдает запомненное значение в двоичном виде. Второе: он всегда делает только то, что вы ему говорите, и никогда не опускается до дурацких шуточек, способных нарушить работу всей процессорной системы.

Память

Триггер

Давайте продолжим издеваться над вашим несчастным (возможно, даже воображаемым) другом. Пусть теперь он запомнит число ноль. Когда вы касаетесь его левой руки, он должен запоминать число ноль, а когда правой — число один. При вопросе «Какое число ты помнишь?» друг должен всегда отвечать то число, которое запоминал — ноль или один.
Простейшей запоминающей ячейкой является RS-триггер («триггер» значит «переключатель»). RS-триггер может хранить в себе один бит данных («ноль»/«один»), и имеет два входа. Вход Set/Установка (совсем как левая рука вашего друга) записывает в триггер «один», а вход Reset/Сброс (соответственно, правая рука) — «ноль».

Регистр

Немного сложнее устроен регистр. Ваш друг превращается в регистр тогда, когда вы просите его что-нибудь запомнить, а потом говорите «Эй, напомни мне, что я говорил тебе запомнить?», и друг правильно отвечает.

Регистр обычно может хранить в себе чуть больше, чем один бит. У него обязательно есть вход данных, выход данных и вход разрешения записи. С выхода данных вы в любой момент можете прочитать то, что в этом регистре записано. На вход данных вы можете подавать те данные, которые хотите в этот регистр записать. Можете подавать данные до тех пор, пока не надоест. В регистр все равно ничего не запишется до тех пор, пока на вход разрешения записи не подать один, то есть «логическую единицу».

Сдвиговый регистр

Вы когда-нибудь стояли в очередях? Наверняка стояли. Значит, вы представляете, каково быть данными в сдвиговом регистре. Люди приходят и становятся в конец очереди. Первый человек в очереди заходит в кабинет к большой шишке. Тот, кто был вторым в очереди, становится первым, а тот, кто был третьим — теперь второй, и так далее. Очередь — это такой хитрый сдвиговый регистр, из которого «данные» (ну, то есть люди) могут убегать по делам, предварительно предупредив соседей по очереди. В настоящем сдвиговом регистре, разумеется, «данные» из очереди сбегать не могут.

Итак, у сдвигового регистра есть вход данных (через него данные попадают в «очередь») и выход данных (из которого можно прочитать самую первую запись в «очереди»). Еще у сдвигового регистра есть вход «сдвинуть регистр». Как только на этот вход приходит «логическая единица», вся очередь сдвигается.

Есть одно важное различие между очередью и сдвиговым регистром. Если сдвиговый регистр расчитан на четыре записи (например, на четыре байта), то первая в очереди запись дойдет до выхода из регистра только после четырех сигналов на вход «сдвинуть регистр».

Оперативная память

Если много-много триггеров объединить в регистры, а много-много регистров объединить в одной микросхеме, то получится микросхема оперативной памяти. У микросхемы памяти обычно есть вход адреса, двунаправленный вход данных (то есть в этот вход можно записывать, и с него же можно считывать) и вход разрешения записи. На вход адреса подаем какое-нибудь число, и это число выберет определенную ячейку памяти. После этого на входе/выходе данных мы можем прочитать то, что записано в эту самую ячейку.
Теперь мы одновременно подадим на вход/выход данных то, что хотим в эту ячейку записать, а на вход разрешения записи — «логическую единицу». Результат немного предсказуем, не так ли?

Процессор

BitBitJump

Процессоры иногда делят на CISC — те, которые умеют выполнять много разных команд, и RISC — те, которые умеют выполнять мало команд, но выполняют их хорошо. Одним прекрасным вечером мне подумалось: а было бы здорово, если бы можно было сделать полноценный процессор, который умеет выполнять всего одну команду. Вскоре я узнал, что существует целый класс однокомандных процессоров — OISC, чаще всего они используют команду Subleq (вычесть, и если меньше или равно нулю, то перейти) или Subeq (вычесть, и если равно нулю, то перейти). Изучая различные варианты OISC-процессоров, я нашел в сети сайт Олега Мазонки, который разработал простейший однокомандный язык BitBitJump. Единственная команда этого языка так и называется — BitBitJump (скопировать бит и перейти по адресу). Этот, безусловно эзотерический, язык является полным по Тьюрингу — то есть на нем можно реализовать любой компьютерный алгоритм.

Подробное описание BitBitJump и ассемблер для этого языка можно найти на сайте разработчика . Для описания алгоритма работы процессора достаточно знать следующее:

1. При включении процессора в регистрах PC, A и B записаны 0
2. Считываем ячейку памяти с адресом PC и сохраняем прочитанное в регистр A
3. Увеличиваем PC
4. Считываем ячейку памяти с адресом PC и сохраняем прочитанное в регистр B
5. Увеличиваем PC
6. Записываем в ячейку с адресом, записанным в регистре B, содержимое бита с адресом А.
7. Считываем ячейку памяти с адресом PC и сохраняем прочитанное в регистр B
8. Записываем в регистр PC содержимое регистра B
9. Переходим к пункту 2 нашего плана
10. PROFIT!!!

К сожалению, алгоритм бесконечный, и потому PROFIT достигнут не будет.

Собственно, схема

Схема строилась стихийно, поэтому правят бал в ней страх, ужас и кавардак. Тем не менее, она работает, и работает прилично. Чтобы включить процессор, нужно:

1. Ввести программу в ОЗУ
2. Нажать на включатель
3. Установить счетчик в положение 4 (это можно делать и аппаратно, но схема стала бы еще более громоздкой)
4. Включить тактовый генератор

Как видите, использованы один регистр, один сдвиговый регистр, одна микросхема ОЗУ, два двоичных счетчика, один демультиплексор (представленный компараторами), два мультиплексора и немного чистой логики.

Это может показаться глупым вопросом, на который можно ответить одним предложением: кремний – 14 элемент в периодической таблице. Тем не менее, кремний чаще других упоминается на сайтах, посвященных электронике, потому что он не только главный компонент большинства строительных материалов, но и основа для современных компьютерных процессоров, и даже наиболее вероятный кандидат на роль базисного элемента «неуглеродной жизни» Что же делает кремний особенным?

Кремний как строительный материал

После кислорода кремний наиболее распространенный в земной коре элемент, но найти его не так уж и просто, ведь он почти никогда не встречается в чистом виде. Наиболее часто в природе встречается силикат SiO4 или диоксид кремния SiO2. Кремний это также основной компонент песка. Полевой шпат, гранит, кварц - все они основаны на соединении кремния и кислорода.

Соединения кремния имеют широкий спектр полезных свойств, в основном потому, что они могут очень плотно связывать другие атомы в сложных конструкциях. Различные силикаты, такие как силикат кальция, являются основным компонентом цемента, главным связующим бетона и даже штукатурки. Некоторые силикатные материалы используются в керамике, и, конечно, стекле. Кроме того, кремний добавляют в такие субстанции как чугун, чтобы сплав был более прочным.
И, да, кремний также является основным структурным компонентом синтетического материала силикона, из-за чего силикон (silicone) часто путают с кремнием (silicon). Известным примером является Силиконовая долина, которая на самом деле кремниевая.

Кремний как компьютерный чип

При выборе материала для основы компьютерных транзисторов ключевым фактором являлось сопротивление. Проводники имеют низкое сопротивление и проводят ток очень легко, в то время как изоляторы блокируют ток благодаря высокому сопротивлению. Транзистор же должен сочетать в себе оба свойства.
Кремний не единственное полупроводниковое вещество на Земле - он даже не лучший полупроводник. Тем не менее, он широко доступен. Его не сложно добывать и с ним легко работать. И самое главное, ученые нашли надежный способ выводить из него упорядоченные кристаллы. Для кремния эти кристаллы являются тем же, чем бриллиант для алмаза.

Построение идеальных кристаллов является одним из основных аспектов производства компьютерных чипов. Эти кристаллы затем нарезаются в тонкие пластины, гравируются, обрабатываются и проходят сотни обработок, прежде чем становятся коммерческими процессорами. Реально сделать более совершенные транзисторы из углерода или таких экзотических материалов как германий, но ни один из них не позволит воссоздать столь масштабное производство - по крайней мере, пока.
В данный момент кристаллы кремния создаются в 300-мм цилиндрах, но исследования быстро приближаются к рубежу в 450 мм. Это должно урезать производственные затраты, но сохранить темпы роста скорости. Что после этого? Скорее всего, нам, наконец, придется отказаться от кремния в пользу более продвинутого материала - хорошая новость для прогресса, но почти наверняка плохая новость для вашего кошелька.

Кремний как внеземная жизни

Фраза «углеродная жизнь» упоминается довольно часто, но что она значит? Это означает, что основные структурные молекулы нашего тела (белки, аминокислоты, нуклеиновые кислоты, жирные кислоты и другое) строятся на основе атомов углерода. Так происходит потому, что углерод может быть четырехвалентным. Кислород может сформировать две устойчивые химические связи одновременно, азот только три, но углерод может удерживать до четырех разных атомов сразу. Это является мощной основой для построения молекул и развития жизни.

Так как периодическая таблица упорядочена так, что элементы в вертикальном столбце имеют схожие химические свойства - и прямо под углеродом находится кремний. Вот почему так много теоретиков уделяют внимание «кремниевой жизни», одним из доводов в их пользу является тот факт, что кремний также четырехвалентный.
Конечно, учитывая, что кремния на Земле гораздо больше, чем углерода, должна быть веская причина, почему органическая жизнь строится на основе углерода. И тут нужно снова обратиться к периодической таблице. Элементы, которые вертикально находятся ниже, имеют более тяжелые ядра и более крупные электронные оболочки, поэтому кремний из-за своего размера меньше подходит для таких точных задач как построение ДНК. Таким образом, в другой части Вселенной развитие организма на основе кремния теоретически возможно, но на нашей планете это вряд ли случится.
Кремний буде появляться в новостях в еще долго, ведь даже если какой-то элемент заменит его в качестве основы для компьютерных вычислений, до момента полного перехода пройдет очень много времени. К тому же есть и другие сферы его применения, и не исключено, что будут найдены и новые способы использования этого вещества. По всей вероятности, кремний по-прежнему останется одним из главных веществ в физическом мире человеческой деятельности.

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор . И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле , дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов , открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние "0" или "1".

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – "silicium" в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования , а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа . Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы "–" касался p-стороны пластины, а "+" – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. "+" от источника к p-стороне, а "–" – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода .

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии .

Но, как только мы подключим еще один источник питания (назовем его V2), установив "+" контакт на «центральную» p-область (базу), а "–" контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

Выдыхаем!

4. Так как все-таки работает компьютер?

А теперь самое главное .

В зависимости от подаваемого напряжения, транзистор может быть либо открыт , либо закрыт . Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – "0".

При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или "1" в двоичной системе.

Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1 . Итак, мы определились с тем, что такое бит . Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом .

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов .

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы , в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор .

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

  • 1964 год IBM System/360. Компьютер, совместимый с универсальным программным кодом. Набор инструкций для одной модели процессора мог использоваться и для другой.
  • 70-e годы. Появление первых микропроцессоров. Однокристальный процессор от Intel. Intel 4004 – 10 мкм ТП, 2 300 транзисторов, 740 КГц.
  • 1973 год Intel 4040 и Intel 8008. 3 000 транзисторов, 740 КГц у Intel 4040 и 3 500 транзисторов при 500 кГц у Intel 8008.
  • 1974 год Intel 8080. 6 мкм ТП и 6000 транзисторов. Тактовая частота около 5 000 кГц. Именно этот процессор использовался в компьютере Altair-8800. Отечетсвенная копия Intel 8080 – процессор КР580ВМ80А, разработанный Киевским НИИ микроприборов. 8 бит.
  • 1976 год Intel 8080 . 3 мкм ТП и 6500 транзисторов. Тактовая частота 6 МГц. 8 бит.
  • 1976 год Zilog Z80. 3 мкм ТП и 8500 транзисторов. Тактовая частота до 8 МГц. 8 бит.
  • 1978 год Intel 8086 . 3 мкм ТП и 29 000 транзисторов. Тактовая частота около 25 МГц. Система команд x86, которая используется и сегодня. 16 бит.
  • 1980 год Intel 80186 . 3 мкм ТП и 134 000 транзисторов. Тактовая частота – до 25 МГц. 16 бит.
  • 1982 год Intel 80286. 1,5 мкм ТП и 134 000 транзисторов. Частота – до 12,5 МГц. 16 бит.
  • 1982 год Motorola 68000 . 3 мкм и 84 000 транзисторов. Этот процессор использовался в компьютере Apple Lisa.
  • 1985 год Intel 80386 . 1,5 мкм тп и 275 000 транзисторов.Частота – до 33 МГц в версии 386SX.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

  • кэш-памяти;
  • конвейера;
  • встроенного сопроцессора;
  • множителя.

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы . Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

  • SPARC;
  • ARM ;
  • PowerPC;
  • Intel P5;
  • AMD K5;
  • Intel P6.

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому - атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры . Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов . О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

  • сложность команд и откровенная их запутанность;
  • высокое потребление энергии и выделение теплоты.

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь - самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

  • мобильность;
  • автономность.

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

4.62 из 5, оценили: 34 )

сайт Большая статья, наливайте чай.

Сейчас полно информации в интернете по теме процессоров, можно найти кучу статей о том как он работает, где в основном упоминаются регистры, такты, прерывания и прочее...Но, человеку не знакомому со всеми этими терминами и понятиями достаточно трудно вот так "с лету" вникнуть в понимание процесса, а начинать надо с малого - а именно с элементарного понимания как устроен процессор и из каких основных частей он состоит .

Итак, что же окажется внутри микропроцессора, если его разобрать:

цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).

Под номером 2 - находится сам кристалл, по факту являющийся самой важной и дорогой в изготовлении частью микропроцессора. Именно благодаря этому кристаллу происходят все вычисления (а это и есть самая главная функция процессора) и чем он сложнее, чем совершенней - тем мощнее получается процессор и тем дороже соответственно. Кристалл изготавливается из кремния. На самом деле процесс изготовления очень сложный и содержит в себе десятки шагов, подробнее в этом видео:

Цифра 3 - специальная текстолитовая подложка, к которой крепятся все остальные части процессора, кроме того она играет роль контактной площадки - на ее обратной стороне есть большое количество золотистых "точек" - это контакты (на рисунке их немного видно). Благодаря контактной площадке (подложке) обеспечивается тесное взаимодействие с кристаллом, ибо напрямую хоть как нибудь воздействовать на кристалл не представляется возможным.

Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается "мостик" между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.

Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):

Вообще устройство процессоров разных производителей и даже моделей одного производителя может сильно разниться. Однако принципиальная схема работы остается прежней - у всех есть контактная подложка, кристалл (или несколько, расположенных в одном корпусе) и металлическая крышка для отвода тепла.

Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):

Форма контактов и структура их расположения зависит от процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без "штырьков", поскольку штырьки находятся прямо в сокете материнской платы.

А бывает другая ситуация, где "штырьки" контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:

Как уже упоминалось выше, устройство разных моделей процессоров одного производителя может различаться, перед нами яркий тому пример - четырехъядерный процессор Intel Core 2 Quad, который по сути представляет собой 2 двухъядерных процессора линейки core 2 duo, совмещенных в одном корпусе:

Важно! Количество кристаллов внутри процессора и количество ядер процессора - не одно и то же.

В современных моделях процессоров Intel умещается сразу 2 кристалла (чипа). Второй чип - графическое ядро процессора, по-сути играет роль встроенной в процессор видеокарты, тоесть даже если в системе отсутствует , графическое ядро возьмет на себя роль видеокарты, причем довольно мощной (в некоторых моделях процессоров вычислительная мощь графических ядер позволяет играть в современные игры на средних настройках графики).

Вот и все устройство центрального микропроцессора , вкратце конечно же.